
Side Effect Free Dialogue Management in a Voice Enabled Procedure Browser

Manny Rayner, Beth Ann Hockey

Mail Stop T27-A2
ICSI/UCSC/NASA Ames Research Center

Moffett Field, CA 94035
mrayner@riacs.edu, bahockey@email.arc.nasa.gov

Abstract
We describe a general side-effect free dialogue man-
agement architecture suitable for command and control
tasks, which extends the “update semantics” framework
by including task as well as dialogue information in the
information state. We show that this enables simple and
elegant treatments of several dialogue management prob-
lems, including corrections, confirmations, querying of
the environment, and regression testing. The architecture
is discussed in the context of an implemented application,
a voice enabled procedure browser for an astronautics do-
main.

1. Introduction

A spoken language system that carries out a command
and control task typically divides into three main com-
ponents: the input module, the output module, and the
dialogue manager. The input module processes spoken
input, and converts it into abstract utterance representa-
tions using speech recognition, semantic analysis, and
other techniques. The output module processes abstract
action requests, and transforms them into concrete exter-
nal actions, such as speaking, updating a visual display, or
moving a real or simulated robot. Mediating between the
input and output modules, we have the dialogue manager
(DM), which at the most basic level transforms abstract
utterance representations into abstract action representa-
tions.

Most spoken language systems have some notion of
context, which typically will include the preceding dia-
logue, the current state of the task, or both. For example,
consider the reaction of a simulated robot to the command
“Put it on the block”. This might include both remem-
bering a recently mentioned object to serve as a referent
for “it” (dialogue context), and looking around the cur-
rent scene to find an object to serve as a referent for “the
block” (task context). The DM will thus both access the
current context as an input, and update it as a result of
processing utterances.

In most dialogue systems, contextual information is
distributed through the DM as part of the current pro-
gram state. This means that processing of an input ut-

terance involves at least some indirect side-effects, since
the program state will normally be changed. If the DM
makes procedure calls to the output module, there will
also be direct side-effects in the form of exterior actions.
As every software engineer knows, side-effects are nor-
mally considered a Bad Thing. They make it harder to
design and debug systems, since they render interactions
between modules opaque. The problem tends to be par-
ticularly acute when performing regression testing and
evaluation; if a module’s inputs and outputs depend on
side-effects, it is difficult or impossible to test that mod-
ule in isolation. The upshot for spoken language systems
is that it is often difficult to test the DM except in the
context of the whole system.

In this paper, we will describe an architecture which
directly addresses the problems outlined above, and
which has been implemented in a substantial system, a
voice-enabled procedure browser scheduled for initial de-
ployment on the International Space Station (ISS) late
in 2004. There are two key ideas. First, we split the
DM into two pieces: a large piece, comprising nearly
the whole of the code, which is completely side-effect
free, and a small piece which is responsible for actually
performing the actions. Second, we adopt a consistent
policy about representing contexts as objects. Both dis-
course and task-oriented contextual information, without
exception, is treated as part of the context object.

The rest of the paper is organised as follows. Sec-
tion 2 presents the procedure browser application, and
Section 3 gives an overview of the DM architecture. Sec-
tion 4 describes how we have used the architecture to
solve a number of specific dialogue management prob-
lems. Section 5 concludes.

2. The Clarissa procedure browser

Astronauts aboard the ISS spend a great deal of their
time performing complex procedures. This often in-
volves having one crew member reading the procedure
aloud, while while the other crew member performs the
task, an extremely expensive use of astronaut time. The
Clarissa Procedure Assistant is designed to provide a
cheaper alternative, whereby an automatic system navi-



gates through the procedure under voice control, reading
each step out as it is reached. There are about 75 differ-
ent commands, of which the most important are those for
navigation (“next”, “previous”, “go to step three”), ac-
cessing non-current steps (“preview step six”, “read step
eight point two”), recording, playing and deleting voice
notes (“record voice note”, “play voice note on step three
point one”, “delete voice note on step two”), and setting
or cancelling alarms (“set alarm for five minutes from
now”, “cancel alarm at ten twenty one”). The current
version has a vocabulary of about 260 words. Clarissa
also includes a conventional GUI-style interface, closely
integrated with the voice interface, so that many com-
mands can be input in either voice or mouse/keyboard
mode; since procedure tasks are typically hands- and
eyes-busy, voice is however assumed to be the primary
modality. The recognition and semantic analysis com-
ponents of Clarissa have been described in earlier papers
[1, 2]: here, we will focus on the dialogue management
aspects.

The nature of the Clarissa task highlights several spe-
cific dialogue management problems. Since there is often
a high level of background noise (up to 65 dB in the ISS
Russian Module), recognition can frequently be error-
prone, and it is important to provide efficient support for
corrections. Some procedures, for example the ones for
space-suit checkout, are extremely safety-critical, and an-
other requirement is that the system should be able to
navigate procedures in a mode which confirms that each
procedure step has been completed before proceding to
the next one. Finally, the DM frequently needs to query
its environment, for example to retrieve voice notes or
parameter values stored from a previous procedure run.

In the next two sections, we will show how the DM
architecture helps address these issues.

3. Side effect free dialogue management

Clarissa implements a minimalist dialogue management
framework, partly based on elements drawn from the
TRIPS [3] and TrindiKit [4] architectures. The central
concepts are those of dialogue move, information state
and dialogue action. At the beginning of each turn, the
dialogue manager is in an information state. Inputs to the
dialogue manager are by definition dialogue moves, and
outputs are dialogue actions. The behaviour of the dia-
logue manager over a turn is completely specified by an
update function f of the form

f : State×Move → State×Actions

Thus if a dialogue move is applied in a given informa-
tion state, the result is a new information state and a set
of zero or more dialogue actions. As in [3], the dialogue
manager is bracketed between an input manager and an
output manager. The input manager receives speech and

other input directed to the dialogue manager, and trans-
forms it into dialogue move format. The output manager
takes dialogue actions produced by the dialogue manager,
and transforms them into concrete sequences of proce-
dure calls meaningful to other components of the system.

In the Clarissa system, most of the possible
types of dialogue moves represent spoken com-
mands. For example, increase(volume) rep-
resents a spoken command like “increase volume”
or “speak up”. Similarly, go to(step(2,3))
represents a spoken command like “go to step two
point three”. The dialogue move undo represents
an utterance like “undo last command” or “go back”
Correction utterances are represented by dialogue
moves of the form correction(X); so for example
correction(record(voice note(step(4))))
represents an utterance like “no, I said record a voice
note on step four”. There are also dialogue moves that
represent non-speech events. For example, a mouse-click
on the GUI’s “next” button is represented as the dialogue
move gui request(next). Similarly, if an alarm
goes off at time T , the message sent from the alarm
agent is represented as a dialogue move of the form
alarm triggered(T). The most common type of
dialogue action is a term of the form say(U), represent-
ing a request to speak an utterance abstractly represented
by the term U. Other types of dialogue actions include
modifying the display, changing the volume, and so on.

The information state is a vector, which in the cur-
rent version of the system contains 26 elements. Some of
these elements represent properties of the dialogue itself.
In particular, the last state element is a back-pointer
to the preceding dialogue state, and the expectations
element encodes information about how the next dialogue
move is to be interpreted. For example, if a yes/no ques-
tion has just been asked, the expectations element
will contain information determining the intended inter-
pretation of the dialogue moves yes and no.

The novel aspect of the Clarissa DM is that all
task information is also uniformly represented as part
of the information state. Thus for example the
current location element holds the procedure step
currently being executed, the current alarms el-
ement lists the set of alarms currently set, associ-
ating each alarm with a time and a message, and
the current volume element represents the output
volume, expressed as a percentage of its maximum
value. Putting the task information into the informa-
tion state has the desirable consequence that actions
whose effects can be defined in terms of their effect
on the information state need not be specified directly.
For example, the update rule for the dialogue move
go to(Loc) specifies among other things that the value
of current location element in the output dialogue
state will be Loc. The specific rule does not also need



to say that an action needs to be produced to update
the GUI by scrolling to the next location; that can be
left to a general rule, which relates a change in the
current location to a scrolling action.

More formally, what we are doing here is dividing
the work performed by the update function f into two
functions, g and h. g is of the same form as f , i.e.

g : State×Move → State×Actions

As before, this maps the input state and the dialogue
move into an output state and a set of actions; the dif-
ference is that this set now only includes the irreversible
actions. The remaining work is done by a second function

h : State×State → Actions

which maps the input state S and output state S ′ into the
set of reversible actions required to transform S into S ′;
the full set of output actions is the union of the reversible
and the irreversible actions. The relationship between the
functions f , g and h can be expressed as follows. Let S

be the input state, and M the input dialogue move. Then
if g(S, M) = 〈S′, A1〉, and h(S, S′) = A2, we define
f(S, M) to be 〈S′, o(A1 ∪ A2)〉, where o is a function
that maps a set of actions into an ordered sequence.

In the Clarissa system, h is implemented concretely
as the set of all solutions to a Prolog predicate which
contains one clause for each type of difference between
states which can lead to an action. Thus we have for
example a clause which says that a difference in the
current volume elements between the input state and
the output state requires a dialogue action that sets the
volume; another clause which says that an alarm time
present in the current alarms element of the input
state but absent in the current alarms element re-
quires a dialogue action which cancels an alarm; and
so on. The ordering function o is defined by a table
which associates each type of dialogue action with a pri-
ority; actions are ordered by priority, with the function
calls arising from the higher-priority items being exe-
cuted first. Thus for example the priority table defines
a load procedure action as being of higher priority
than a scroll action, capturing the requirement that the
system needs to load a procedure into the GUI before it
can scroll to its first step.

4. Specific issues

4.1. “Undo” and “correction” moves

As already noted, one of the key requirements for
Clarissa is an ability to handle “undo” and “correction”
dialogue moves. The conventional approach, as for ex-
ample implemented in the CommandTalk system [5], in-
volves keeping a “trail” of actions, together with a table
of inverses which allow each action to be undone. The

extended information state approach described above per-
mits a more elegant solution to this problem, in which
corrections are implemented using the g and h functions
together with the last state element of the informa-
tion state. Thus if we write u for the “undo” move,
and l(S) to denote the state that S’s last state el-
ement points to, we can define g(S, u) to be 〈l(S), ∅〉,
and hence f(S, u) will be 〈l(S), o(h(S, l(S)))〉. Simi-
larly, if we write c(M) for the move which consists of a
correction followed by M , we can define f(S, c(M)) to
be 〈S′, o(A ∪ h(S, S′))〉, where S′ and A are defined by
g(l(S), M) = 〈S′, A〉.

In practical terms, there are two main payoffs to this
approach. First, code for supporting undos and correc-
tions shrinks to a few lines, and becomes trivial to main-
tain. Second, corrections are in general faster to execute
than they would be in the conventional approach, since
the h function directly computes the actions required to
move from S to S′, rather than first undoing the actions
leading from l(S) to S, and then redoing the actions from
l(S) to S′. When actions involve non-trivial redrawing on
the visual display, this difference can be quite significant.

4.2. Confirmations

Confirmations are in a sense complementary to correc-
tions. Rather than making it easy for the user to undo an
action they have already carried out, the intent is to re-
peat back to them the dialogue move they appear to have
made, and give them the option of not performing it at all.
Confirmations can also be carried out at different levels.
The simplest kind of confirmation echoes the exact words
the system believed it recognised. It is usually, however,
more useful to perform confirmations at a level which in-
volves further processing of the input. This allows the
user to base their decision about whether to proceed not
merely on the words the system believed it heard, but also
on the actions it proposes to take in response.

The information state framework also makes possi-
ble a simple approach to confirmations. Here, the key
idea is to compare the current state with the state that
would arise after responding to the proposed move, and
repeat back a description of the difference between the
two states to the user. To write this symbolically, we
start by introducing a new function d(S, S ′), which de-
notes a speech action describing the difference between S

and S′, and write the dialogue moves representing “yes”
and “no” as y and n respectively. We can then define
fconf (S, M), a version of f(S, M) which performs con-
firmations, as follows. Suppose we have f(S, M) =
〈S′, A〉. We define fconf (S, M) to be 〈Sconf , d(S, S′)〉,
where Sconf is constructed so that f(Sconf , y) = 〈S′, A〉
and f(Sconf , n) = 〈S, ∅〉. In other words, Sconf is by
construction a state where a “yes” will have the same ef-
fect as M would have had on S if the DM had proceeded
directly without asking for a confirmation, and where a



“no” will leave the DM in the same state as it was before
receiving M .

There are two points worth noting here. First, it is
easy to define the function fconf precisely because f is
side-effect free; this lets us derive and reason about the
hypothetical state S ′ without performing any external ac-
tions. Second, the function d(S, S ′) will in general be
tailored to the requirements of the task, and will describe
relevant differences between S and S ′. In Clarissa, where
the critical issue is which procedure steps have been com-
pleted, d(S, S′) describes the difference between S and
S′ in these terms, for example saying that one more step
has been completed, or three steps skipped.

4.3. Querying the environment

An obvious problem for any side-effect free dialogue
management approach arises from the issue of querying
the environment. If the DM needs to acquire external in-
formation to complete a response, it may seem that the
relationship between inputs and output can no longer be
specified as a self-contained function.

The framework can, however, be kept declarative by
splitting up the DM’s response into two turns. Suppose
that the DM needs to read a data file in order to respond
to the user’s query. The first turn responds to the user
query by producing an action request to read the file and
report back to the DM, and an output information state in
which the DM is waiting for a dialogue move reporting
the contents of the file; the second turn responds to the
file-contents reporting action by using the new informa-
tion to reply to the user. The actual side-effect of reading
the file occurs outside the DM, in the space between the
end of the first turn and the start of the second. Variants
of this scheme can be applied to other cases in which the
DM needs to acquire external information.

4.4. Regression testing and evaluation

Regression testing and evaluation on context-dependent
dialogue systems is a notoriously messy task. The prob-
lem is that it is difficult to assemble a reliable test library,
since the response to each individual utterance is in gen-
eral dependent on the context produced by the preceding
utterances. If an utterance early in the sequence produces
an unexpected result, it is usually impossible to know
whether results for subsequent utterances are meaningful.

In our framework, regression testing of contextually
dependent dialogue turns is unproblematic, since the in-
put and output contexts are well-defined objects. We have
been able to construct substantial libraries of test exam-
ples, where each example consists of a 4-tuple 〈InState,
DialogueMove, OutState, Actions〉. These libraries re-
main stable over most system changes, except for oc-
casional non-downward-compatible redesigns of the di-
alogue context format, and have proved very useful.

5. Summary and conclusions

We have described a general side-effect free dialogue
management architecture suitable for command and con-
trol tasks, which extends the “update semantics” frame-
work by including task as well as dialogue information
in the information state. We have shown that this enables
simple and elegant treatments of several dialogue man-
agement problems, including corrections, confirmations,
querying of the environment, and regression testing. The
methods have been implemented in a non-trivial applica-
tion, and have performed well there.

The main obstacle to general applicability is that the
approach relies on being able to represent the task state
completely. For many applications, like the one described
here, this is however entirely possible, and in these cases
the approach appears extremely effective.

6. Acknowledgements

The greater part of the work described here was carried
out at the Research Institute for Advanced Computer Sci-
ence, NASA Ames Research Center, under Cooperative
Agreement NCC 2–1006.

7. References

[1] G. Aist, J. Dowding, B. Hockey, and J. Hierony-
mus, “An intelligent procedure assistant for astronaut
training and support,” in Proceedings of the 40th An-
nual Meeting of the Association for Computational
Linguistics (demo track), Philadelphia, PA, 2002.

[2] M. Rayner, B. A. Hockey, J. Hieronymus, J. Dowd-
ing, and G. Aist, “An intelligent procedure assis-
tant built using REGULUS 2 and ALTERF,” in Pro-
ceedings of the 41st Annual Meeting of the Asso-
ciation for Computational Linguistics (demo track),
Sapporo, Japan, 2003.

[3] J. Allen, D. Byron, M. Dzikovska, G. Ferguson,
L. Galescu, and A. Stent, “An architecture for a
generic dialogue shell,” Natural Language Engi-
neering, Special Issue on Best Practice in Spoken
Language Dialogue Systems Engineering, pp. 1–16,
2000.

[4] S. Larsson and D. Traum, “Information state and di-
alogue management in the TRINDI dialogue move
engine toolkit,” Natural Language Engineering, Spe-
cial Issue on Best Practice in Spoken Language Dia-
logue Systems Engineering, pp. 323–340, 2000.

[5] A. Stent, J. Dowding, J. Gawron, E. Bratt, and
R. Moore, “The CommandTalk spoken dialogue sys-
tem,” in Proceedings of the Thirty-Seventh Annual
Meeting of the Association for Computational Lin-
guistics, 1999, pp. 183–190.


